The technology that exists in the modern economy is already powerful enough to replicate and improve many of the functions workers spend their days performing. Over the next 10 years, these technologies will become more powerful and efficient, and will find new applications across many different industries as more businesses use them to their full potential.
In this chapter, we use a task-based lens to assess the potential impact this change could have on the jobs landscape by 2028. The impact on each worker will depend on two factors: 1. The task-profile that defines each occupation. This refers to the specific balance of tasks a worker performs in their job each day.
2. The extent to which the application of technology will outperform a human worker on each specific task in 10 years’ time.
Our modelling assumptions are informed by a technology scenario developed with a range of Cisco technology experts — see Appendix 1 for more details.
Our modelling suggests that 630,000 workers could be displaced by technology by 2028. This means that, after a decade of technological advancement, today’s level of economic output could be produced by 7% fewer workers across the Australian economy. This ‘displacement effect’ is most apparent in the transport sector, in relative terms. We calculate that 7% of its workforce will be displaced over the next decade3 — equivalent to 57,000 full-time equivalent (FTE) jobs.
Both the construction and agriculture and mining sectors also face displacement levels exceeding 10% of their workforces (see figure 2).
The relative vulnerability of these sectors to technology-driven displacement is a result of the nature of their work. Workers spend more time operating vehicles, handling objects and controlling machines, all of which have the potential to be completed more efficiently with the application of new and existing technologies, such as advanced robotics and machine learning.
In absolute terms, we find that business and professional services will be the most severely affected sector, accounting for more than 100,000 of the country’s displaced workers.4 This is largely because business and professional services is the largest sector in Australia, employing almost 20% of today’s workforce. In comparison, the construction, manufacturing, and transport sectors together are projected to see 210,000 workers displaced — a third of the overall displacement effect.
Our modelling identifies hotels and restaurants and education as the least-vulnerable sectors to technological displacement over the next 10 years. There are opportunities for technology to enhance productivity and raise the quality of service in these two sectors, such as automated hotel check-in and virtual learning environments. But for many roles in these sectors, from bartenders to primary school teachers, elements of the day-to-day work such as social interaction, team-building and resolving conflicts are critical. These human-facing, non-routine activities are less vulnerable to automation according to our technology scenario, and therefore, despite advancements in technology, humans will still tend to outperform in these tasks.
3 The timeframe of our analysis was 2018 to 2028. 4 Business and professional services is an aggregation of the following sectors; IT and communications, Finance and insurance, Real estate, Professional services, Administration and support services.
The displacement potential of technology on different industries is driven by their specific mix of employment, and the nature of the work they conduct. In fact, it is the unique blend of tasks performed by different occupations – what we refer to as their “task-profile” – which determines a given worker’s exposure to technological displacement. We analysed 433 Australian occupations to understand which occupations bear the greatest burdens of technological displacement. According to this occupational analysis, jobs categorised as vehicle and machine operators and assemblers6 are most vulnerable to the predicted technological developments, in relative terms. More than 16% of these workers—who include lorry drivers, taxi drivers, and machinery operators — are projected to be displaced by technology in the next 10 years (see Fig. 3). In absolute terms, craft and related trades workers — which includes mechanics and carpenters — will be most affected, followed by technicians and associate professionals. Both categories are projected to see more than 100,000 workers displaced under our scenario. For further insights into how new technology will affect different types of occupation, see Box 2 overleaf.
5. Government and community services consists of public administration, arts and entertainment, and other services. 6 This is a relabelling of the ISCO Rev4 category “plant and machine operators, and assemblers”, which was done to provide more clarity that vehicle drivers, a prominent type of occupation in Australia, is included in this category.
Australia’s workforce is relatively less vulnerable to job displacement than the United States and most of the ASEAN countries we have analysed. Under the same set of modelling assumptions, we expect 7.3% of Australian jobs will be subject to displacement by 2028, compared with 8.4% of the US workforce (see Fig. 4). In relative terms, Australia is much less vulnerable to automation than Vietnam — which faces 18.8% displacement — Indonesia, Thailand, the Philippines, and Malaysia. In contrast, Singapore, an urbanised, heavily service-sector oriented economy, appears to be more resilient than Australia to technological change, with only a 5.5% displacement of its current workforce predicted under the same assumptions.7
7 Displacement effect reported here may differ from published results because modelling assumptions were harmonised across regions for sounds comparison.
Australia’s relatively advantageous position in the face of major technological disruption is the result of the structure of its labour market. Relatively fewer people in Australia are employed in jobs whose task-profiles are most vulnerable to technological change, such as capturing and monitoring information, and manual labour.
Nonetheless, the Australian workforce will still face significant challenges, as its jobs landscape shifts in response to labour savings and productivity gains. In the next chapter, we explore where the growth of new jobs will be concentrated (both in terms of sectors and occupations), before going on to assess how difficult the transition for displaced workers will be.
8 The same assumption regarding the extent to which technology will alter the productivity of workers undertaking certain workplace tasks are applied to each country.
To model the impact of technological change on the Australian labour market, we developed 433 unique task-profiles to describe the full range of occupations. Each profile contains a basket of tasks classified “important” to performing that particular job. While more complex occupations tend to require a balance of multiple important tasks, no occupations are entirely dependent on a single task. The displacement effect is determined in part by the make-up of tasks for a given occupation. To shed further light on our analysis, we have selected an occupation at either end of the “vulnerability spectrum” in Australia— nurses and construction labourers. Figs. 5 and 6 illustrate how the nature of work in these occupations changes over the next 10 years.
The healthcare sector is the biggest employer in Australia. Its strong recent growth is predicted to continue along with the country’s ageing population. Nurses are the largest occupation in this sector and, despite significant advances in technology's use in healthcare, are among the least vulnerable to technological automation. Nurses spend a large proportion of their time making human connections that are very difficult for a robot to replicate and this will continue to be a pivotal aspect of their work. However, we predict nurses will spend less time engaging in routine administration and communication, with more time instead spend critical thinking and interacting with computers.
The construction sector is Australia’s third-largest employer. Unlike nurses, the nature of work conducted by construction labourers means they are more vulnerable to technology-driven displacement. Today, construction labourers spend a significant amount of time engaging in physical activities and capturing information. In 10 years’ time, we predict that these tasks will typically constitute a smaller share of their working time. More of their time will be taken up by critical thinking, and by repairs and maintenance of the additional technological equipment that is used across the construction sector in 2028.